

Systeme II

8. Die physikalische Schicht (Teil 6)

Thomas Janson°, Kristof Van Laerhoven*, Christian Ortolf°

Folien: Christian Schindelhauer°

Technische Fakultät

°: Rechnernetze und Telematik, *: Eingebettete Systeme

A Richtfunk mit mehreren Antennen CoNe Freiburg sin(x)-sin(x)=0 sin(2774) - sin(x)+cos = V-sin(x)

- 2 Sender übertragen das gleiche Signal mit gleichen Daten
- verschiedene
 Distanzen zum
 Empfänger führen zu
 Phasenverschiebung
 - Signale löschen sich teilweise aus
- Phasenverschiebung wird für
 Empfängerposition angepasst
 - durch Superposition verdoppelt sich die Amplitude

A Beamforming von 3 Sendeantennen Freiburg

 Beamforming Gain = Steigerung der Empfangsleistung im Vergleich zu Einzelantenne mit gleicher Sendeleistung
 Sogo Sigu (X)

Smart Antennas, MIMO, SIMO, MISO

- Smart antennas
 - MIMO (multiple input/multiple output)
 - SIMO (single input/multiple output)
 - MISO, SISO
 - sind mehrere Antennen, welche koordiniert Signale übertragen und empfangen

MU.

Vorteile

CoNe Freiburg

- Beam forming (Power gain)

SEZ Mac

- Diversity gain
- Anwendungen
 - IEEE-802.11n-WLAN

Beamforming

- Durch geschickte
 Phasenverschiebung
 kann ein gerichteter
 Sendestrahl gesendet
 werden
 - oder symmetrisch auch empfangen werden

Phase Angle Range:

Power Gain CoNe Freiburg

- Warum haben <u>n Sender</u> (oder n Empfänger) eine höhere Reichweite als 1 Sender und Empfänger?
 - mit gleichen Antennen
 - mit gleicher Energie Leistung
- Superposition:

 $A \wedge E \sim U$ $P = U \cdot T = U^2 \wedge E$

- Die elektrischen Felder überlagern sich (nicht die Energie)
- Energy = $P \sim E^2$ = (el. Feld)²
- El. Feldstärke = D ~ 1/d

- 1 Sender
 - Energie: P
 - Energie im Abstand d: P/d^2

 $n \cdot q \cdot sin(x)$ $P_n(n \cdot q) \leq = h^2 \cdot f = n \cdot P$

pro Antenne

- n Sender
 - Energie von n Sendern: <u>P</u>
 - Feldstärke eines von n Sendern:
 - Feldstärke im Abstand d von n Sendern: $\frac{n}{d}\sqrt{\frac{P}{n}} = \frac{\sqrt{Pn}}{d}$
 - Gesamtenergie im Abstand d: $n \cdot \frac{1}{d^2}$
- Der selbe Effekt funktioniert auch beim Empfänger
 - führt zu einem Power Gain von Faktor n für n Sender und n Empfänger

Steigerung der Datenrate mit Power Gain

 $Log(1+) \leq X$

 Shannons Theorem: maximale Datenrate *H*·log₂ (1+S/N) bit/s

Beamforming kann bessere Codierung verwendet werden (z.B. 4, 8, 16, 256 QAM)

 Multi-User-MIMO: im 802.11ac Standard können mehrere Nutzer gleichzeitig den Kanal benutzen

Multipath Channel $h_1 = a_1 \cdot e^{j2\pi f + \phi}$ CoNe Freiburg $s_i = a_i \cdot e_j P$ Superposition von Reflektionen ectes $\overline{s_1}e^{jft}$ $(s_1 + s_2 + s_3)e^{jft}$ $-s_3 e^{jft}$ $h = s_1 + s_2 + s_3$ orten Eulersche Formel $e^{ix} = cos(x) + jsin(x)$

Superposition führt zu drastischen Einbrüchen

UNI FREIBURG

Introduction to Wireless MIMO – Theory and Applications Jacob Sharony IEEE LI 2006

Räumliches Multiplex (Diversity Gain)

May

- Wenn in der Umgebung viele Reflektoren (scatterers) vorhanden sind,
 - dann ergibt sich f
 ür die Beschreibung der Sender-/Empf
 änger-Beziehung eine Kanalmatrix H
- H_{i,j} =

CoNe

Freiburg

- resultierende D\u00e4mpfung und Phasenverschiebung zwischen Sender i und Empf\u00e4nger j
- Für geeignete Kanalmatrizen
 - mit "guter" Singulärwertzerlegung
 - können bis zu max{#Sender, #Empfänger} parallele Kommunikationskanäle verwendet werden
- Dadurch können mehr Daten übertragen werden, als Shannons Theorem für SISO zulässt
 M Konale

Kanalmatrix

н

Systeme II

8. Die physikalische Schicht

Thomas Janson°, Kristof Van Laerhoven*, Christian Ortolf°

Folien: Christian Schindelhauer°

Technische Fakultät

°: Rechnernetze und Telematik, *: Eingebettete Systeme