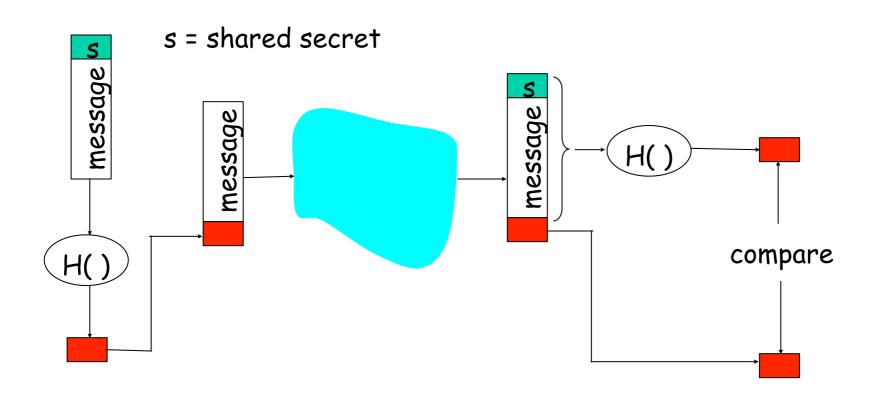


Nachrichtenintegrität

- Erlaubt den Komunikationspartnern die Korrektheit und Authentizität der Nachricht zu überprüfen
 - Inhalt ist unverändert
 - Urheber ist korrekt
 - Nachricht ist keine Wiederholung
 - Reihenfolge der Nachrichten ist korrekt
- Message Digests

Kryptographische Hash-Funktion

- z.B. SHA-1, SHA-2, MD5
- Ein kryptographische Hash-Funktion h bildet einen Text auf einen Code fester Länge ab, so dass
 - h(text) = code
 - es unmöglich ist einen anderen Text zu finden mit:
 - h(text') = h(text) und text ≠ text'
- Mögliche Lösung:
 - Verwendung einer symmetrischen Kodierung



- MD5 ist sehr verbreitet (RFC 1321)
 - berechnet 128-bit Nachricht
 - unsicher
- SHA-1 auch gebräuchlich
 - US standard [NIST, FIPS PUB 180-1]
 - 160-bit Message Digest
 - nicht mehr als sicher angesehen
- SHA-2
 - SHA-256/224
 - SHA-512/384
 - bis jetzt (2015) als sicher angesehen
- SHA-3
 - 2012 veröffentlicht

Message Authentication Code (MAC)

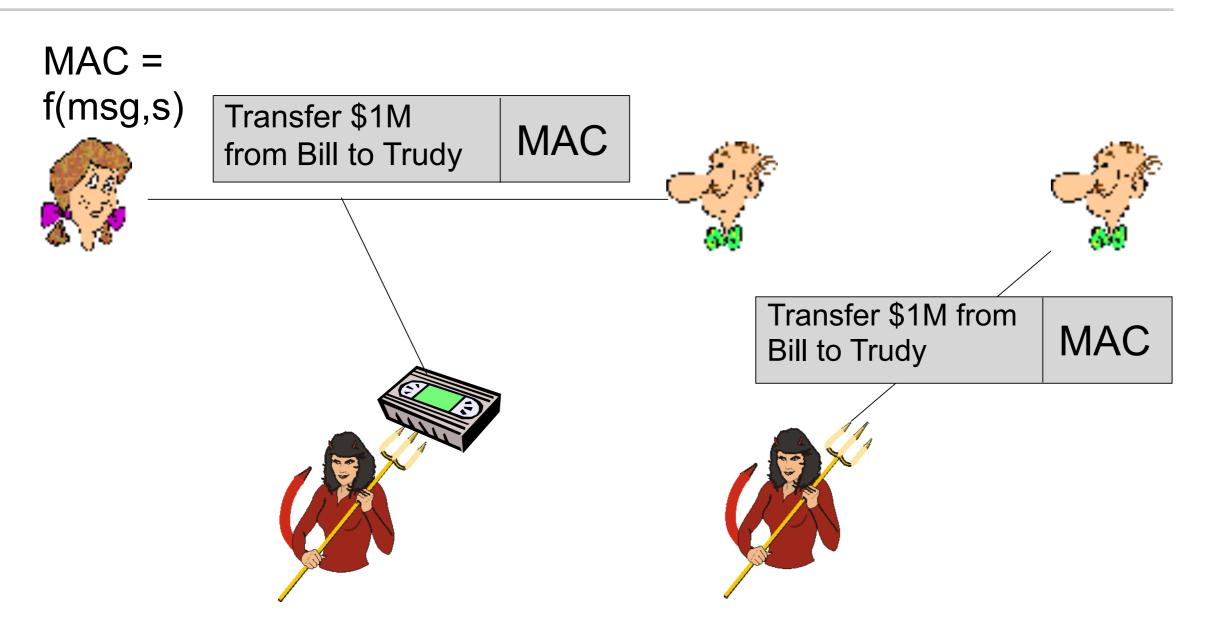
- Authentifiziert Absender
- Überprüft Nachrichtenintegrität
- Keine Verschlüsselung
- "keyed hash"
- Notation: MDm = H(s || m); sende m || MDm

HMAC (Keyed-Hash Message Authentication Code)

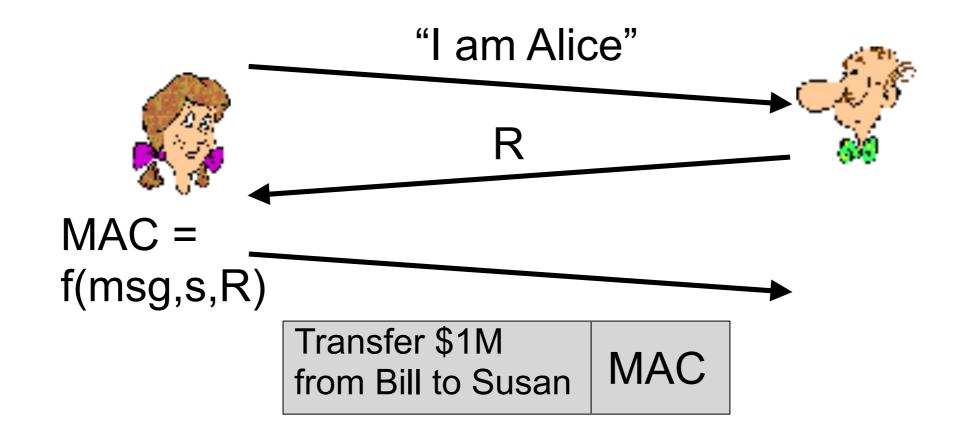
- Populärer MAC-Standard
- Sicher gegen Anhängen von Nachrichten

$$HMAC_K(N) = H\bigg((K \oplus opad) \mid\mid H\Big((K \oplus ipad) \mid\mid N\Big)\bigg)$$

- Nachricht N
- geheimer Schlüssel K
- Konstante opad und ipad
- Erhöht Sicherheit gegen angreifbare Hash-Codes
 - wird in TLS und IPsec verwendet


Authentifizierung der Endpunkte

- Versicherung, dass der Kommunikationspartner korrekt ist
- Angenommen Alice und Bob haben ein gemeinsames Geheimnis, dann gibt MAC eine Authentifizeirung der Endpunkte
 - (end-point authentication)
 - Wir wissen, dass Alice die Nachricht erzeugt hat
 - Aber hat sie sie auch abgesendet?



Playback-Attacke

Verteidigung gegen die Playback-Attacke: nonce (use only once)

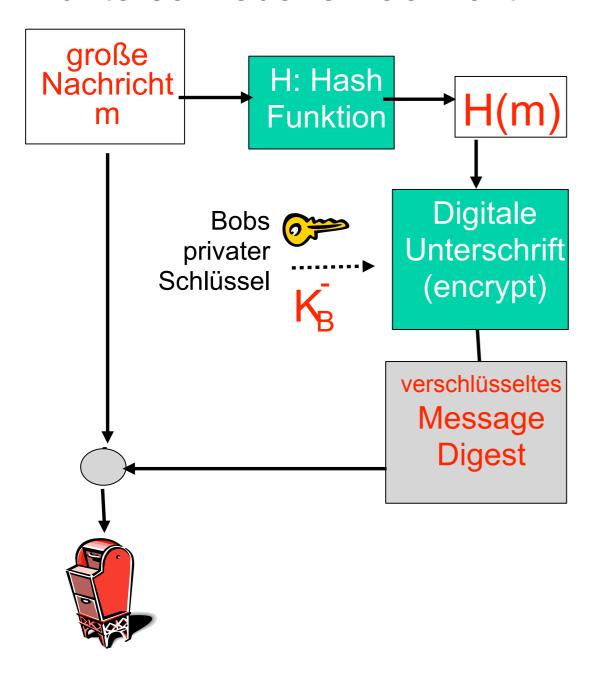
Digitale Unterschriften

- Kryptographischer Algorithmus analog zu handgeschriebenen Unterschriften
 - nur sicherer
- Absender (Bob) unterschreibt digital das Dokument
 - bestätigt seine Urheberschaft
- Ziel ist ähnlich wie MAC
 - aber mit Hilfe von Public-Key-Kryptographie
 - verifizierbar, nicht fälschbar:
 - Empfänger (Alice) kann anderen beweisen, dass Bob und sonst niemand das Dokument unterschrieben hat

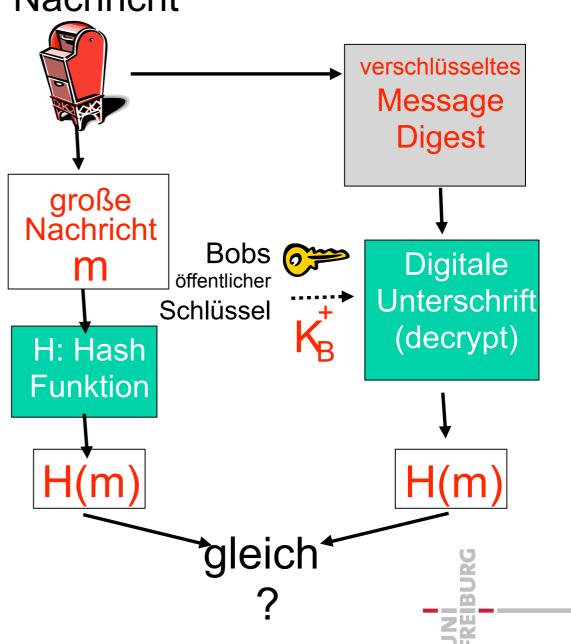
Elektronische Unterschriften

Digitale Signaturen

- Unterzeichner besitzt einen geheimen Schlüssel
- Dokument wird mit geheimen Schlüssel unterschrieben
- und kann mit einem öffentlichen Schlüssel verifiziert werden
- Öffentlicher Schlüssel ist allen bekannt


Beispiel eines Signaturschemas

- m: Nachricht
- Unterzeichner
 - berechnet h(text) mit kryptographischer Hashfunktion
 - und veröffentlicht m und signatur = g(privat, h(text)), für die Entschlüsselungsfunktion g
- Kontrolleur
 - berechnet h(text)
 - und überprüft f(offen, signatur) = h(text), für die asymmetrische Verschlüsselungsfunktion g



Digitale signature = signiertes Message Digest

Bob sendet eine digital unterschriebene Nachricht

Alice überprüft die Unterschrift und die Korrektheit der Nachricht

Digitale Unterschrift

- Angenommen Alice erhält
 - die Nachricht m
 - mit digitaler Unterschrift K_B(m)
- Alice überprüft m
 - mit den öffentlichen Schlüssel von Bob
 - Ist $K_B^+(K_B^-(m)) = m$?
- Falls K⁺_B(K_B(m)) =m
 - dann hat jemand Bobs geheimen Schlüssel
- Alice verifiziert daher, dass
 - Bob hat m unterschrieben
 - Niemand anders hat m unterschrieben
 - Bob hat m und nicht m'≠m unterschrieben
- Unleugbarkeit
 - Alice kann mit m und der Unterschrift vor Gericht gehen und beweisen, dass Bob m unterschrieben hat

Public-key Zertifizierung

- Motivation: Trudy spielt Bob einen Pizza-Streich
- Problem:
 - Trudy bestellt per e-mail: "Liebe Pizzeria, schick mir bitte vier Pepperoni-Pizza. vielen Dank Bob"
 - Trudy unterschreibt mit einem privaten Schlüssel
 - Trudy sendet die Bestellung zur Pizzeria
 - Trudy sendet der Pizzeria den öffentlichen Schlüssel, behauptet aber er gehöre Bob
 - Die Pizzeria überprüft die Unterschrift
 - Aber Bob mag gar keine Pepperoni